Journal of Organometallic Chemistry, 290 (1985) 375-386 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CRYSTAL AND MOLECULAR STRUCTURE OF $(\eta^5-C_5H_5)W[C_3(CMe_3)_2Me]-(PMe_3)Cl_2$, A SPECIES WITH A TETRAHEDRAL WC₃ CORE FORMED FROM A TUNGSTENACYCLOBUTADIENE COMPLEX VIA ATTACK ON TUNGSTEN BY A PHOSPHORUS-DONOR LIGAND

MELVYN ROWEN CHURCHILL* and JAMES C. FETTINGER

Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14214 (U.S.A.)

(Received January 16th, 1985)

Summary

The complex $(\eta^5-C_5H_5)W[C_3(CMe_3)_2Me](PMe_3)Cl_2$, prepared previously by the reaction of the tungstenacyclobutadiene complex $(\eta^5-C_5H_5)W[C(Ph)C(CMe_3)C-$ (Ph)]Cl₂ with PMe₃, has been subjected to a single-crystal X-ray diffraction study. This complex crystallizes in the centrosymmetric monoclinic space group $P2_1/c$ $(C_{2h}^{5}; \text{ No. 14})$ with a 10.302(3) Å, b 15.314(3) Å, c 14.130(2) Å, β 98.036(16)°, V 2207.4(8) Å³ and Z = 4. Diffraction data (Mo- K_{α} , 2 θ 4.5–50.0°) were collected with a Syntex $P2_1$ automated four-circle diffractometer and the structure was refined to R 4.7% for all 3919 independent reflections (R 3.4% for those 3290 data with $|F_0| > 3\sigma(|F_0|)$). The molecular geometry approximates that of a "four-legged" piano stool" with the tungsten atom surrounded by an η^{5} -cyclopentadienyl ligand. two chloride ligands (W-Cl(1) 2.538(2) Å, W-Cl(2) 2.504(2) Å) a trimethylphosphine ligand (W-P 2.600(2) Å) and an η^3 -[C₃(CMe₃)₂Me] ligand. The three carbon atoms of the C₃ ring are tightly bound to tungsten (W-C(1) 2.139(5) Å, W-C(2) 2.150(6) Å W-C(3) 2.200(6) Å) and the WC₃ core of the molecule is closer to a "tungstenatetrahedrane" moiety than to the more familiar η^3 -cyclopropeniumtungsten (i.e., $C_3H_3^+$) representation; the C_3 ring is perhaps best termed an η^3 -cyclopropenyl system.

Introduction

For some years we have been interested in "high oxidation-state" organometallic complexes of tungsten. We have characterized crystallographically several alkylidyne

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

^{*} Address correspondence to this author.

complexes of tungsten [1-7] and a number of tungstenacyclobutadiene complexes formed by addition of internal alkynes to alkylidynetungsten complexes [8-12], see eq. 1.

It has recently been shown that certain tungstenacyclobutadiene complexes react with donor ligands, rearranging into tetrahedral WC₃ complexes. We have previously characterized the species $W[C_3Me_2(CMe_3)][Me_2N(CH_2)_2NMe_2]Cl_3$ [13,14] and now provide the results of a full crystallographic study on $(\eta^5-C_5H_5)W[C_3(CMe_3)_2Me]$ -(PMe₃)Cl₂, prepared as in eq. 2. A preliminary account of this work has appeared previously [15].

 $CpW[\eta^{2}-1,3-C_{3}(CMe_{3})_{2}Me]Cl_{2} + PMe_{3} \rightarrow CpW[\eta^{2}-C_{3}(CMe_{3})_{2}Me](PMe_{3})Cl_{2} (2)$

Experimental

Data collection

Crystals of $(\eta^2 - C_5 H_5)W(C_3(CMe_3)_2 Me](PMe_3)Cl_2$ were provided by Professor R.R. Schrock and Mr. L.G. McCullough of the Department of Chemistry, Massachusetts Institute of Technology. The crystal selected for the X-ray structural analysis was a reddish-brown parallelepiped of approximate orthogonal dimensions $0.25 \times 0.25 \times 0.25$ mm. It was sealed into a thin-walled glass capillary tube under an inert atmosphere (argon) and was aligned on our Syntex P2₁ automated four-circle diffractometer. Set-up operations (i.e., determination of unit cell parameters, Laue group and the orientation matrix) and data collection (via a coupled $\theta(crystal)-2\theta(counter)$ scan routine) were carried out as described previously [16]; details are listed in Table 1. The systematic absences h0l for l = 2n + 1 and 0k0 for k = 2n + 1 are consistent with the standard setting of the centrosymmetric monoclinic space group $P2_1/c$ (C_{2h}^{2h} ; No. 14) [17].

All data were corrected for absorption and for Lorentz and polarization effects and were converted to unscaled |F| values; any datum with I(net) < 0 was assigned to value of $|F_0| = 0$. Data were placed on an approximate absolute scale by means of a Wilson Plot.

Solution and refinement of the structure

All subsequent calculations were performed using our locally modified version of the Syntex XTL interactive crystallographic program set [18]. The calculated structure factors were based upon the analytical form of the neutral atoms' scattering factors and were corrected for both the real ($\Delta f'$) and imaginary ($i\Delta f''$) components of anomalous dipsersion [19]. The function minimized in the least-squares refinement process was $\Sigma w(|F_0| - |F_c|)^2$ where $1/w = [\{\sigma(|F_0|)\}^2 + \{0.01|F_0|\}^2]$.

TABLE 1 CRYSTALLOGRAPHIC DATA FOR $(\eta^5-C_5H_5)W[C_3(CMe_3)_2Me](PMe_3)Cl_2$

(A) Unit cell parameters at 24°C (.	297 K)
Crystal system: monoclinic	Formula: C ₂₀ H ₃₅ Cl ₂ PW
Space group: $P2_1/c$ (No. 14)	Molec. wt.: 561.28
a 10.302(3) Å	Z = 4
b 15.314(3) Å	$D(calcd) 1.69 \text{ g cm}^{-3}$
c 14.130(2) Å	$\mu(Mo-K_{a})$ 58.5 cm ⁻¹
β 98.036(16)°	
V 2207.4(8) Å ³	
(B) Collection of X - Ray Diffra	ction Data
Diffractometer: Syntex P2 ₁	
Radiation: Mo- K_{α} ($\bar{\lambda}$ 0.710730 Å)
Monochromator: highly oriented mode; assumed	(pyrolytic) graphite, $2\theta(\max)$ 12.160° for 002 reflection; equatorial 50% perfect/50%/ideally mosaic for polarization correction
Reflections measured: $+h$, $+k$,	± 1 for 2θ 4.5-50.0°; 4135 reflections merged to 3913 unique data
Scan-type: coupled θ (crystal)-2 θ	(counter)
Scan-speed: 2.50 deg/min	
Scan width: $[2\theta(K_{\alpha})-1.0]-[2\theta($	$(K_{\alpha_{\alpha}}) + 1.0] \deg$
Backgrounds: stationary-crystal a one-half total scan	nd stationary-counter; measured at each end of the 2θ scan (each for time)
Standards: 3 remeasured after each	ch batch of 97 reflections; no significant fluctuations observed

The position of the tungsten atom was determined from a Patterson synthesis. All remaining non-hydrogen atoms were located from difference-Fourier syntheses. Hydrogen atoms were included in idealized positions based upon d(C-H) 0.95 Å [20] and the appropriate trigonal-planar or staggered-tetrahedral geometry. Full matrix least-squares refinement converged with R_F 4.7% and R_{wF} 3.4% for 217 parameters refined against all 3919 unique data and R_F 3.4% and R_{wF} 3.2% for those 3290 data with $|F_0| > 3\sigma(|F_0|)$.

A final difference-Fourier map showed no significant features; the structure is both correct and complete. Positional parameters are collected in Table 2, while thermal parameters are listed in Table 3.

Description of the molecular structure

The crystal consists of an ordered array of discrete molecular units of $(\eta^5 - C_5 H_5)W[C_3(CMe_3)_2Me](PMe_3)Cl_2$, which are separated by normal Van der Waals' distances; there are no abnormally short intermolecular contacts. The overall molecular geometry and the atomic labelling scheme are illustrated in Fig. 1. A stereo-scopic view of the structure appears as Fig. 2. Interatomic distances and angles are collected in Tables 4 and 5, while interatomic planes are given in Table 6.

The central tungsten atom is linked to an η^5 -cyclopentadienyl ring, two chloride ligands, one PMe₃ ligand and the C₃ ring (defined by atoms C(1), C(2) and C(3)). The overall stereochemistry about tungsten approximates to the "four-legged piano stool" arrangement found for such molecules as $(\eta^5-C_5H_5)W(CO)_3Cl$ [21], see Fig. 3; in this description we regard the C₃ ring as taking up a single coordination site more-or-less *trans* to the PMe₃ ligand. The $(\eta^5-C_5H_5)W[C_3](P)Cl_2$ core of the molecule has approximate, but not precise C_s symmetry (cf., Fig. 3). The two chloride ligands are close to equivalent, with W-Cl(1) 2.538(2) Å, W-Cl(2) 2.504(2)

TABLE 2	
FINAL POSITIONAL PARAMETERS FOR (η^5 -C ₅ H ₅)W[C ₃ (CMe ₃) ₂ Me](PMe ₃)Cl ₂	ł

Atom	x	у	Z	B (A ²)
W	0.22110(2)	0.05882(1)	0.21477(2)	
Cl(1)	0.00125(15)	-0.01876(11)	0.18926(12)	
Cl(2)	0.39615(15)	0.12380(10)	0.33498(11)	
Р	0.10560(16)	0.12087(11)	0.35263(11)	
C(4)	-0.07120(69)	0.11073(60)	0.34575(57)	
C(5)	0.12505(79)	0.23784(49)	0.36829(54)	
C(6)	0.15877(87)	0.08526(56)	0.47421(48)	
cm	0.28705(53)	-0.06437(36)	0.27465(36)	
C(2)	0.26714(56)	-0.07036(38)	0.17008(39)	
C(3)	0.38530(56)	-0.03326(36)	0.21611(40)	
cán	0.28479(61)	-0.13085(39)	0.35426(43)	
C(12)	0.36327(72)	-0.10158(50)	0.44869(47)	
C(13)	0 14189(75)	-0.14764(50)	0 36973(50)	
C(14)	0.33924(85)	-0.21868(48)	0.32421(58)	
C(21)	0.21723(67)	-0.13150(46)	0.00201(46)	
C(31)	0.53076(60)	-0.04174(40)	0.07201(46)	
C(37)	0.53070(00)	-0.05360(56)	0.20784(40)	
C(33)	0.58454(60)	0.03701(40)	0.50551(54)	
C(34)	0.30434(07)	-0.12004(52)	0.13731(39)	
C(54)	0.54905(71)	-0.12094(33)	0.14370(36)	÷
C(51)	0.09823(71)	0.10097(58)	0.11/02(54)	
C(52)	0.2130(10)	0.20243(43)	0.15421(50)	
(53)	0.31537(76)	0.16188(61)	0.11905(57)	
C(54)	0.265.30(92)	0.09644(55)	0.05992(52)	
C(55)	0.13246(89)	0.09460(52)	0.03671(46)	
H(4A)	- 0.0988	0.1362	0.4008	6.0
H(5A)	0.0809	0.2565	0.4194	6.0
H(6A)	0.1076	0.1134	0.5161	6.0
H(12A)	0.3586	-0.1452	0.4958	6.0
H(13A)	0.1401	-0.1891	0.4194	6.0
H(14A)	0.3377	- 0.2600	0.3741	6.0
H(21A)	0.2670	-0.1838	0.0986	6.0
H(32A)	0.7025	-0.0586	0.2977	6.0
H(33A)	0.6751	0.0295	0.1558	6.0
H(34A)	0.6392	-0.1272	0.1397	6.0
H(51)	0.0126	0.1745	0.1309	6.0
H(52)	0.2201	0.2508	0.1966	6.0
H(53)	0.4054	0.1769	0.1335	6.0
H(54)	0.3149	0.0581	0.0261	6.0
H(55)	0.0737	0.0556	0.0200	6.0
H(4B)	-0.0948	0.0507	0.3425	6.0
H(4C)	-0.1124	0.1398	0.2902	6.0
H(5B)	0.0888	0.2667	0.3111	6.0
H(5C)	0.2156	0.2515	0.3824	6.0
H(6B)	0.2485	0.0998	0.4919	6.0
H(6C)	0.1480	0.0238	0.4783	6.0
H(12B)	0.3277	-0.0485	0.4687	6.0
H(12C)	0.4521	-0.0926	0.4401	6.0
H(13B)	0.0937	-0.1695	0 3123	6.0
H(13C)	0.1035	- 0.0945	0.3868	60
H(14B)	0.4268	-0.2109	0.3119	60
H(14C)	0.2867	- 0.2397	u.2679	60
H(21B)	0.2248	-0.1053	0.0320	60
H(21C)	0.1277	-0.1444	0.0953	6.0
H(32B)	0 5853	-0.1050	0 3346	6.0
H(32C)	0.6010	-0.0045	0.3344	6.0
H(33B)	0.5732	0.0040	0.1955	6.0
H(33C)	0.5383	0.0002	0.1955	6.0
H(34P)	0.5505	-0.1120	0.0900	0.0
H(24C)	0.5000	- 0.1130	0.0841	0.0
11(24)	0.5192	-0.1/18	0.1/44	0.0

· ·

TABLE 3

ANISOTROPIC THERMAL PARAMETERS FOR (η^5 -C₃H₅)W[C₃(CMe₃)₂Me](PMe₃)Cl₂

Atom	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
w	2.505(10)	1.9135(94)	2.1353(94)	- 0.0400(93)	-0.0049(62)	-0.0289(87)
Cl(1)	2.966(65)	3.846(73)	4.075(72)	-0.573(58)	0.045(55)	-0.756(61)
Cl(2)	3.588(69)	3.136(69)	3.734(68)	-0.436(57)	-0.707(55)	-0.716(56)
Р	3.650(74)	2.931(73)	2.901(67)	0.199(60)	0.466(56)	-0.503(56)
C(4)	3.84(34)	7.10(50)	6.22(43)	-0.25(35)	2.04(31)	-1.99(39)
C(5)	6.59(44)	3.73(36)	5.48(40)	0.50(33)	1.13(34)	-1.73(31)
C(6)	8.37(52)	6.34(47)	2.78(30)	2.14(40)	1.57(31)	0.09(29)
C(1)	3.10(24)	2.13(22)	2.36(22)	-0.04(23)	0.05(18)	-0.29(21)
C(2)	3.22(26)	2.60(27)	2.60(24)	0.14(22)	0.38(20)	-0.07(21)
C(3)	2.89(25)	2.20(24)	2.92(25)	0.24(19)	0.15(20)	0.12(19)
C(11)	4.05(31)	2.38(26)	3.49(28)	-0.08(23)	0.12(23)	0.53(22)
C(12)	5.46(38)	4.43(36)	3.44(30)	0.39(31)	-0.32(27)	0.56(27)
C(13)	5.65(39)	4.81(40)	4.22(33)	-1.38(32)	0.98(29)	1.14(29)
C(14)	7.25(47)	3.35(34)	5.83(41)	0.63(33)	1.05(36)	1.13(31)
C(21)	5.04(36)	3.92(33)	3.46(29)	-0.28(29)	0.15(26)	- 1.29(26)
C(31)	3.19(27)	3.08(31)	4.21(30)	0.32(23)	0.91(23)	0.27(23)
C(32)	3.18(30)	6.55(46)	5.44(38)	1.13(32)	-0.39(26)	0.15(35)
C(33)	3.67(32)	4.70(41)	6.73(44)	0.03(28)	1.57(30)	0.79(32)
C(34)	4.62(37)	4.99(41)	6.18(42)	1.25(32)	1.66(32)	-0.30(34)
C(51)	3.96(34)	6.69(49)	4.82(37)	2.54(35)	1.09(29)	2.92(36)
C(52)	10.01(62)	2.45(30)	3.45(33)	-0.25(36)	0.18(37)	0.61(25)
C(53)	4.82(39)	6.42(50)	4.89(39)	-1.16(37)	0.25(32)	2.80(37)
C(54)	7.56(52)	4.94(40)	3.44(33)	1.75(39)	2.09(34)	1.53(30)
C(55)	7.63(50)	4.60(37)	2.26(27)	-1.34(36)	-1.12(29)	1.24(26)
						• •

(These anisotropic thermal parameters are in standard Syntex XTL format and enter the expression for the calculated structure factor in the form: $\exp[-0.25(h^2a^{\star 2}B_{11} + ... 2hka^{\star}b_{12}^{\star} + ...)])$

Å and angle Cl(1)-W-Cl(2) 145.69(5)°. The tungsten-trimethyphosphine linkage is in the normal range with W-P 2.600(2) Å and the PMe₃ ligand is symmetrically disposed with respect to the chloride ligands, with angle Cl(1)-W-P 77.57(5)° and angle Cl(2)-W-P 73.03(5)°.

Individual W-C distances to the η^5 -cyclopentadienyl system range from W-C(51) 2.334(8) Å through W-C(53) 2.373(9) Å and the W \cdots Cp distance (Cp is the centroid of the η^5 -C₅H₅ ring) is 2.046 Å (cf., values of 2.260(10)-2.376(9) Å and 2.001 Å, respectively, for $(\eta^5$ -C₅H₅)W(CO)₃Cl [21]). The η^5 -C₅H₅ system is planar within the limits of experimental error (see Table 6); C-C distances are 1.359(12)-1.408(11) Å and C-C-C angles are 106.7(7)-109.2(8)°.

The three carbon atoms of the C₃ ring are approximately equidistant from the tungsten atom, with W-C(1) 2.139(5) Å, W-C(2) 2.150(6) Å and W-C(3) 2.200(6) Å. The tungsten atom lies +1.991 Å from the plane of the C₃ ring (see Fig. 4). Displacements of the α -carbon atoms of the substituents from the C₃ ring are as follows: -0.908(6) Å for C(11), -0.632(7) Å for C(21) and -0.752(6) Å for C(31). These perpendicular displacements from the C₃ ring translate into angular displacements (calculated as sin⁻¹ (perpendicular displacement)/(C(*ipso*)-C(α) distance)) of 36.7°, 25.2° and 29.6°, respectively. The ring to substituent distances are C(1)-C(11) 1.520(8), C(2)-C(21) 1.483(9) and C(3)-C(31) 1.525(8) Å (average 1.509 ± 0.023 Å). Within the C₃ ring, the carbon-carbon distances are C(1)-C(2)

Fig. 1. Labelling of atoms in the $(\eta^5-C_5H_5)W[C_3(CMe_3)_2Me](PMe_3)Cl_2$ molecule (ORTEP-II diagram).

Fig. 2. Stereoscopic view of the $(\eta^5 - C_5H_5)W[C_3(CMe_3)_2Me](PMe_3)Cl_2$ molecule.

Atoms	Dist.	Atoms	Dist.	
(A) Distances within	WC ₁ system			
W-C(1)	2.139(5)	C(1)-C(2)	1.466(7)	
W-C(2)	2.150(6)	C(1)-C(3)	1.473(8)	
W-C(3)	2.200(6)	C(2)-C(3)	1.416(8)	
$W \cdots Tr^{a}$	1.994			
(B) Distances within	$(\eta^{5} - C_{5}H_{5})W$ moiety			
W-C(51)	2.334(8)	C(51)-C(52)	1.377(12)	
W-C(52)	2.357(7)	C(52)-C(53)	1.375(13)	
W-C(53)	2.373(9)	C(53)-C(54)	1.359(12)	
W-C(54)	2.368(8)	C(54)-C(55)	1.363(13)	
W-C(55)	2.356(7)	C(55)-C(51)	1.408(11)	
W····Cp ^b	2.046		. ,	
(C) Remaining tungs	sten – ligand and $P - C$ dis	tances		
W-Cl(1)	2.538(2)	P-C(4)	1.817(7)	
W-Cl(2)	2.504(2)	P - C (5)	1.813(8)	
W-P	2.600(2)	P-C(6)	1.813(7)	
(D) Peripheral C-C	distances in $C_3(CMe_3)_2$	Me ligand		
C(1)-C(11)	1.520(8)	C(11)-C(12)	1.527(9)	
C(2)-C(21)	1.483(9)	C(11)-C(13)	1.540(10)	
C(3)-C(31)	1.525(8)	C(11)-C(14)	1.540(10)	
C(31)-C(32)	1.522(10)	C(31)-C(34)	1.524(10)	
C(31)-C(33)	1.540(10)			

INTERATOMIC DISTANCES (in Å) FOR (η^5 -C₅H₅)W[C₃(CMe₃)₂Me](PMe₃)Cl₂

^a "Tr" is the centroid of the triangle formed by C(1), C(2) and C(3). ^b "Cp" is the centroid of the η^5 -C₅H₅ ligand as defined by C(51) through C(55).

1.466(7) Å, C(2)–C(3) 1.416(8) Å and C(3)–C(1) 1.473(8) Å; the C(2)–C(3) distance appears to be significantly shorter than the other two intraring distances. This pattern is repeated in the related "tungstenatetrahedrane" species W[C₃Et₂(CMe₃)]-(O₂CMe)₃ (C–C 1.405(11), 1.448(8) and 1.451(10) Å) [22], but not in W[C₃Me₂(CMe₃)][Me₂N(CH₂)₂NMe₂]Cl₃(C–C = 1.383(9), 1.432(10) and 1.547(10) Å [13].

The structure of $[CPh_3^+][C1O_4^-]$ has been reported [23] as have the structures of several transition metal complexes containing the η^3 -C₃Ph₃ ligand [24–27]. Details on these species have been collected in Table 7, along with information on the three characterized "tungstenatetrahedrane" complexes.

All indications are that the η^3 -C₃R₃ ligands in the "tungstenatetrahedrane" complexes are more tightly bound than the η^3 -C₃Ph₃ ligands in the other complexes. Thus, the C₃ ring in Ni(η^3 -C₃Ph₃)(η^5 -C₅H₅) [24] is further from the nickel atom than is the C₅ ring by ~ 0.05 Å (perpendicular distances are Ni-C₃ 1.779 Å and Ni-C₅ 1.726 Å), whereas the C₃ ring in the present (η^5 -C₅H₅)W[C₃(CMe₃)₂Me]-(PMe₃)Cl₂ molecule is closer to the tungsten atom than is the C₅ ring by ~ 0.05 Å (1.991 versus 2.046 Å). Furthermore, the phenyl rings of the η^3 -C₃Ph₃ ligands are bent out of the C₃ plane by only ~ 20° (specifically: 19.2, 19.7 and 20.1° for Ni(η^3 -C₃Ph₃)(η^5 -C₅H₅)[24] and 16.7, 19.4 and 20.2° for Ni(η^3 -C₃Ph₃)NiCl(py)₂ · py [25]) but by more than this for the "tungstenatetrahedrane" complexes, viz., 25.2°,

TABL	E 5
------	-----

INTERATOMIC ANGLES (deg) FOR (η^5 -C₅H₅)W[C₃(CMe₃)₂Me](PMe₃)Cl₂

Atoms	Angle	atoms	Angle	
(A) Angles around the tu	ingsten atom			
Cl(1)-W-Cl(2)	145.69(5)	Cl(2)-W-C(3)	76.64(15)	
Cl(1)-W-P	77.57(5)	P-W-C(1)	100.33(15)	
Cl(1) - W - C(1)	82.59(15)	P-WC(2)	134.36(16)	
Cl(1) - W - C(2)	75.91(16)	P-W-C(3)	131.26(15)	
Cl(1)-W-C(3)	111.77(15)	C(1)-W-C(2)	39.97(21)	
Cl(2)-W-P	73.03(5)	C(1)-W-C(3)	39.66(20)	
Cl(2)-W-C(1)	85.61(15)	C(2) - W - C(3)	37.98(21)	
Cl(2)-W-C(2)	113.41(16)			
(B) Angles around phosp	phorus			
W-P-C(4)	119.27(27)	C(4) - P - C(5)	100.60(37)	
W-P-C(5)	113.47(26)	C(4)-P-C(6)	101.12(27)	
W-P-C(6)	119.39(27)	C(5)-P-C(6)	99.67(36)	
(C) Angles around C(1),	C(2) and C(3)			
W-C(1)-C(11)	147.85(40)	C(2)-C(1)-C(3)	57.62(37)	
W-C(1)-C(2)	70.40(31)	C(2)-C(1)-C(11)	133.61(49)	
W-C(1)-C(3)	72.41(31)	C(3)-C(1)-C(11)	135.66(49)	
W-C(2)-C(21)	137.03(44)	C(1)-C(2)-C(3)	61.44(39)	
W-C(2)-C(1)	69.63(30)	C(1)-C(2)-C(21)	140.75(54)	
W-C(2)-C(3)	72.94(33)	C(3)-C(2)-C(21)	141.37(55)	
W-C(3)-C(1) W-C(3)-C(2)	67.94(30) 69.08(32)	C(1)-C(3)-C(2) C(1)-C(3)-C(31)	60.94(38) 140.82(51)	
W-C(3)-C(31)	144.74(42)	C(2)-C(3)-C(31)	136.17(52)	
(D) Angles within the C	Me, Groups			
C(1)-C(11)-C(12)	112.89(51)	C(12)-C(11)-C(13)	108.95(54)	
C(1)-C(11)-C(13)	109.32(51)	C(12)-C(11)-C(14)	109.18(55)	
C(1)-C(11)-C(14)	109.70(52)	C(13)-C(11)-C(14)	106.60(55)	
C(3)-C(31)-C(32)	111.53(53)	C(32)-C(31)-C(33)	108.01(56)	
C(3)-C(31)-C(33)	112.66(53)	C(32)-C(31)-C(34)	109.20(56)	
C(3)-C(31)-C(34)	108.29(53)	C(33)-C(31)-C(34)	107.01(56)	
(E) Angles within the η^2	⁵ -C ₅ H ₅ Ring			
C(55)-C(51)-C(52)	106.7(7)	C(53)-C(54)-C(55)	109.2(8)	
C(51)-C(52)-C(53)	108.5(7)	C(54)-C(55)-C(51)	107.5(7)	
C(52)-C(53)-C(54)	108.1(8)			

29.6° and 36.7° for the substituents in the present $(\eta^5-C_5H_5)W[C_3(CMe_3)_2-Me](PMe_3)Cl_2$ molecule; 25.09, 34.90 and 43.52° for $W[C_3Me_2(CMe_3)][Me_2-N(CH_2)_2NMe_2]Cl_3$ [13]; 21.54, 26.50 and 30.25° for $W[C_3Et_2(CMe_3)](O_2CMe)_3$ [22]. The structural evidence suggests that the $\eta^3-C_3R_3$ ligands in these tungsten complexes are tightly bound and are not simply two-electron donating η^3 -cyclopropenium $(\eta^3-C_3R_3^+)$ ligands. A survey of Table 7 shows that the perpendicular $Mo-(C_3 \operatorname{ring})$ distance in $Mo(\eta^3-C_3Ph_3)(CO)_2(\operatorname{bipy})Br$ [27] is 2.06 Å and that the individual Mo-C distances range from 2.193(18) Å through 2.262(22) Å (average 2.220 Å). Since Mo and W have almost identical covalent radii (as a result of the lanthanide contraction), it follows that similar $W-(C_3 \operatorname{ring})$ and W-C distances are to be expected. This is not the case. Thus, in the present $(\eta^5-C_5H_5)W[C_3(CMe_3)_2Me](PMe_3)Cl_2$ molecule we have $W-(C_3 \operatorname{ring})$ 1.991 Å and

TABLE 6

INTRAMOLECULAR PLANES AND ATOMIC DEVIATIONS THEREFROM

Atom	Dev. (Å)	Atom	Dev. (Å)	
(A) C(1)-C(2)-	-C(3) plane			
-0.4235x	+0.9041y - 0.0571z + 2.1333 =	= 0		
C(1) *	0.000	C(11)	-0.908(6)	
C(2)*	0.000	C(21)	-0.632(7)	
C(3)*	0.000	C(31)	- 0.752(6)	
w	1.9913(2)			
(B) C(51) \rightarrow C(55) plane			
0.0054x + 0	0.6356y - 0.7720z - 0.3085 = 0)		
C(51)*	-0.008(8)	Cl(1)	-2.537(2)	
C(52)*	0.006(7)	Cl(2)	-2.703(2)	
C(53)*	-0.002(9)	Р	-2.939(2)	
C(54)*	-0.003(8)	C(1)	- 3.889(5)	
C(55)*	0.007(7)	C(2)	-2.817(6)	
Ŵ	- 2.0457(2)	C(3)	-2.947(6)	
Dihedral angle	(°) plane A/plane B 51.94° (1	28.06)°.		

W-C (aver) 2.163 Å. For W[C₃Me₂(CMe₃)][Me₂N(CH₂)₂NMe₂]Cl₃ [13], W-(C₃ ring) 1.911 Å and W-C (aver) 2.096 Å; for W[C₃Et₂(CMe₃)](O₂CMe)₃ [22], W-(C₃ ring) 1.942 Å and W-C (aver) 2.112 Å. Although the pattern of C(ring)-C(ring)

Fig. 3. The $(\eta^5-C_5H_5)W[C_3(CMe_3)_2Me](PMe_3)CI_2$ molecule, projected onto the plane of the $(\eta^5-C_5H_5)$ ligand.

Fig. 4. The $(\eta^5-C_5H_5)W[C_3(CMe_3)_2Me](PMe_3)Cl_2$ molecule, viewed in the plane of the η^3-C_3 ligand.

TABLE 7			
DISTANCES (in Å)	WITHIN C	C_3R_3CO	MPLEXES

Complex	$M-C_3(\perp)$	M–C	C-C(ring)	C(ring)– C(subst)	Ref.
$[C_3Ph_3^+][ClO_4^-]$	_	_	1.373(5)	1.436(5)	23
$Ni(C_3Ph_3)(C_5H_5)$	1. 779	1.953(66)	1.421(8)	1.439(8)	24
		1.961(6)	1.427(8)	1.451(8)	
		1.968(6)	1.437(8)	1.466(8)	
$Ni(C_3Ph_3)Cl(py)_2py$	1.759	1.896(8)	1.414(11)	1.456(11)	25
		1.958(8)	1.422(11)	1.459(12)	
		1.968(8)	1.429(11)	1.461(12)	
$Co(C_3Ph_3)(CO)_3$	-	1.995(3)	1.410(5)	1.456(4)	26
		2.008(3)	1.421(5)	1.460(5)	
		2.024(3)	1.428(5)	1.462(2)	
$Mo(C_3Ph_3)(CO)_2(bipy)Br$	2.06	2.193(18)	1.413(30)	1.436(23)	27
		2.204(26)	1.454(26)	1.456(20)	
		2.262(22)	1.455(26)	1.495(21)	
$CpW[C_1(CMe_1)_2Me](PMe_1)Cl_2$	1.991	2.139(5)	1.416(8)	1.483(9)	present
		2.150(6)	1.466(7)	1.520(8)	work
		2.200(6)	1.473(8)	1.525(8)	
$W[C_3Me_2(CMe_3)](tmeda)Cl_3$	1. 911	2.040(7)	1.383(9)	1.490(11)	13 ·
		2.115(7)	1.432(10)	1.493(10)	
		2.133(7)	1.547(10)	1.503(10)	
$W[C_3Et_2(CMe_3)](O_2CMe)_3$	1.942	2.089(5)	1.405(11)	1.483(9)	22
		2.114(7)	1.448(8)	1.491(11)	
		2.134(6)	1.451(10)	1.500(15)	

distances is not presently understood, Table 7 does reveal a systematic pattern of C(ring)-C(substituent) distances. These are short in an uncoordinated $C_3Ph_3^+$ ion (1.436(5) Å in $[C_3Ph_3^+][ClO_4^-]$ [21]), increase slightly in the coordinated η^3 -cyclopropenium complexes (1.452 Å (aver) in Ni(η^3 -C₃Ph_3)(η^5 -C₅H₅) [24], 1.459 Å (aver) in Ni(η^3 -C₃Ph_3)Cl(py)_2 · py [25], 1.459 Å (aver) in Co(η^3 -C₃Ph_3)(CO)_3 [26] and 1.462 Å (aver) in Mo(η^3 -C₃Ph_3)(CO)_2(bipy)Br [27]) and are increased further in the tungsten complexes (1.509 Å (aver) in (η^5 -C₅H₅)W[C₃(CMe₃)_2Me](PMe₃)Cl₂, 1.497 Å (aver) in W[C₃Me₂(CMe₃)][Me₂N(CH₂)_2NMe₂]Cl₃ [13] and 1.491 Å (aver) in W[C₃Et₂(CMe₃)](O₂CMe)₃) [22].

In keeping with these structural data, it is found that the η^3 -C₃R₃ rings do not rotate readily in the "tungstenatetrahedrane" complexes [14,15], whereas the estimated barrier to ring rotation in the hypothetical Fe(η^3 -C₃H₃)(CO)₃ is 6-7 kcal/mol [28] and ring rotation is observed in other η^3 -C₃R₃ complexes [29].

All these data indicate that the complex is not best regarded as a $W^{II}-(C_3R_3^+)$ complex; preferable alternatives are the formulations $W^{IV}-(C_3R_3^-)$ or, perhaps, even $W^{VI}-(C_3R_3^{-3})$. Note that all of these alternatives involve the same molecular orbitals. The only point of ambiguity is the degree to which metal \rightarrow ligand electron donation takes place.

With these ambiguities in mind, the nomenclature of such species tends to become an exercise in semantics. It would seem preferable to follow both Hoffmann [28] and Schrock [13] in referring to these species as η^3 -cyclopropenyl complexes.

Additional data. A table of observed and calculated structure factor amplitudes is available upon request from M.R.C.

References

- 1 M.R. Churchill and W.J. Youngs, Inorg. Chem., 18 (1979) 2454 [Crystal structure of W(=CCMe₃)-(=CHCMe₃)(CH₂CMe₃)(dmpe)].
- 2 M.R. Churchill, A.L. Rheingold and H.J. Wasserman, Inorg. Chem., 20 (1981) 3392 [Crystal structures of W(≡CH)(PMe₃)₄Cl and W(≡CH · AlMe_{2-x}Cl_{1+x})(PMe₃)₃Cl].
- 3 M.R. Churchill and H.J. Wasserman, Inorg. Chem., 20 (1981) 4119 [Crystal structure of W(\equiv C·Al₂Me₄Cl)(PMe₃)₂(Me)(η^2 -C₂H₄)].
- 4 S.M. Rocklage, R.R. Schrock, M.R. Churchill and H.J. Wasserman, Organometallics, 1 (1982) 1332 [Crystal structure of W(≡CCMe₃)(PHPh)(PEt₃)₂Cl₂].
- 5 M.R. Churchill, Y.J. Li, L. Blum and R.R. Schrock, Organometallics, 3 (1984) 109 [Crystal structure of [(C₅Me₄(t-Bu))W(≡CCMe₃)I]₂(μ-N₂H₂)].
- 6 S.J. Holmes, R.R. Schrock, M.R. Churchill and H.J. Wasserman, Organometallics, 3 (1984) 476 [Crystal structure of [W₂(≡CPMe₃)₂(PMe₃)₄Cl₄²⁺][AlCl₄⁻]₂].
- 7 M.R. Churchill and Y.J. Li, J. Organomet. Chem., 282 (1985) 239 [Crystal structure of W(=CCMe_3)(PMe_3)_3Cl_3].
- 8 M.R. Churchill and H.J. Wasserman, J. Organomet. Chem., 270 (1984) 201 [Crystal structure of W[C(t-Bu)C(Me)C(Me)]Cl₃].
- 9 M.R. Churchill, J.W. Ziller, J.H. Freudenberger and R.R. Schrock, Organometallics, 3 (1984) 1554 [Crystal structure of W[C(Et)C(Et)C(Et)][O-2,6-C₆H₃(i-Pr)₂]₃].
- 10 J.H. Freudenberger, R.R. Schrock, <u>M.R. Churchill</u>, A.L. Rheingold and J.W. Ziller, Organometallics 3 (1984) 1563 [Crystal structure of W[C(Et)C(Et)C(Et)][OCH(CF₃)₂]₃].
- 11 M.R. Churchill and J.W. Ziller, J. Organomet. Chem., 279 (1985) 403 [Crystal structure of (η⁵-C₅H₅)W[C(Ph)C(t-Bu)C(Ph)]Cl₂].
- 12 M.R. Churchill and J.W. Ziller, J. Organomet. Chem., 286 (1985) 27 [Crystal structure of W[C(t-Bu)][OCH(CF_3)_2]_3].
- 13 R.R. Schrock, S.F. Pedersen, M.R. Churchill and J.W. Ziller, Organometallics, 3 (1984) 1574.

- 14 M.R. Churchill, J.W. Ziller, S.F. Pedersen and R.R. Schrock, J. Chem. Soc., Chem. Commun., (1984) 485.
- 15 M.R. Churchill, J.C. Fettinger, L.G. McCullough and R.R. Schrock, J. Am. Chem. Soc., 106 (1984) 3356.
- 16 M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
- 17 International Tables for X-ray Crystallography, Volume 1, Kynoch Press, Birmingham, England, 1965, p. 99.
- 18 "Synex XTL Operations Manual", 2nd ed., Syntex Analytical instruments, Cuppertino, CA 1976.
- 19 International Tables for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, England, 1974: p. 99-101 and 149-150.
- 20 M.R. Churchill, Inorg. Chem., 12 (1973) 1213.
- 21 C. Bueno and M.R. Churchill, Inorg. Chem., 20 (1981) 2197.
- 22 R.R. Schrock, J.C. Murdzek, J.H. Freudenberger, M.R. Churchill and J.W. Ziller, Organometallics, in press.
- 23 M. Sundaralingham and L.H. Jensen, J. Am. Chem. Soc., 88 (1966) 198.
- 24 R.M. Tuggle and D.L. Weaver, Inorg. Chem., 10 (1971) 1504.
- 25 R.M. Tuggle and D.L. Weaver, Inorg. Chem., 10 (1971) 2599.
- 26 T. Chiang, R.C. Kerber, S.D. Kimball and J.W. Lauher, Inorg. Chem., 18 (1979) 1687.
- 27 M.G. Drew, B.J. Brisdon and A. Day, J. Chem. Soc., Dalton Transac. (1981) 1310.
- 28 T.A. Albright, P. Hofmann and R. Hoffmann, J. Am. Chem. Soc., 99 (1977) 7546.
- 29 R.P. Hughes, J.M.J. Lambert, J.W. Reisch and W.L. Smith, Organometallics, 1 (1982) 1403.